Renal Failure In The Elderly

Claire kennedy
• Extrinsic ageing

• Renal Disease

• Intrinsic ageing
 • Reduced Renal Reserve
 • Blunted Fluid & Electrolyte homeostasis
 • Structural Changes
• ↓ Renal reserve
 • ↓ GFR
 • ↑ BP
 • ↓ number of glomeruli
 • ↑ glomerular sclerosis
 • ↓ renal blood flow
Fluid & Electrolyte homeostasis

- ↓ ability to concentrate & dilute urine
- ↓ response to Vasopressin
- ↓ Renin and Aldosterone levels
- ↓ thirst sensation
- ↓ response to sodium loading and depletion
• **Structural changes**

 • ↓ Renal mass

 • Distal nephrons develop diverticulae
• Urea & creatinine not reliable markers of renal function in the elderly
 • Urea can change independently to GFR
 • Creatinine related to muscle mass

• GFR is more reliable indicator of renal function
 • 24 hour creatinine clearance
Creatinine clearance (ml/min) =

\[(140 - \text{Age}) \times \text{weight (kg)}\]

plasma creatinine (umol/l) \times 0.82
(140 – age) x weight

creatinine (umol/l) x 0.82

- 30 yo, 70kg, creatinine 140
- GFR = 67 ml/min (mild failure)
GFR (mL/min/1.73 m²) =

175
× \text{SCr (exp[-1.154])}
× \text{Age (exp[-0.203])}
× (0.742 \text{ if female})
• Acute Renal Failure
• Chronic Renal Failure
• Renal Replacement Therapy
• More common

• Treatment should not be denied on basis of age

• Check renal function regularly in all unwell elderly patients

• Consider stopping ACEI and diuretics during an acute illness
• R Risk GFR ↓25% from baseline
• I Injury GFR ↓50% from baseline
• F Failure GFR ↓75% from baseline
• L Loss Loss Renal Function x 4 weeks
• E ESKD End Stage Kidney Disease
• Pre-renal
 • Poor renal perfusion

• Renal
 • Direct damage to the kidney
• Dehydration (often a/w sepsis)
• Volume loss (bleeding, over-diuresis)
• Volume redistribution (eg low albumin)
• Poor cardiac output

• Aggravated by many drugs
• Commonly Acute Tubular Necrosis (ATN)
 • Ischaemic
 • Nephrotoxic
 • Pigment

• Rarely
• Obstruction
 • Prostatic enlargement
 • Renal stone
 • Urethral stricture
 • Pelvic tumours
 • U/S : dilated collecting system
- Urea & Creatinine
- Electrolytes
- Arterial Blood Gas
- Inflammatory Markers
- Urine Dipstick
- Urine Microscopy
- Creatine Kinase
- Urinary Sodium
- Chest Xray
- ECG
- Renal Ultrasound
- Others
• Helps distinguish between Acute Tubular Necrosis and volume depletion

• ATN likely >40 meq/l

• Volume depletion likely if <20 meq/l
• Pulse, BP, temperature, cardiac monitor

• Input-Output
 • Incl vomit, drains, faeces, urine
 • May need catheter initially

• Daily weights
- Refractory pulmonary oedema
- Persistent hyperkalaemia (>7mmol/l)
- Worsening acidosis (pH <7.2)
- Uraemic pericarditis
- Uraemic encephalopathy
• More common

• Incidental finding

• Common Causes
 • Hypertension
 • Diabetes
 • Obstruction
<table>
<thead>
<tr>
<th>CKD Stage</th>
<th>GFR (mL/min/1.73 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>60-89</td>
</tr>
<tr>
<td>3</td>
<td>30-59</td>
</tr>
<tr>
<td>4</td>
<td>15-29</td>
</tr>
</tbody>
</table>
• Treat exacerbating factors
• Modify disease
 • Anti-hypertensives in proteinuric CRF
• Avoid exacerbating factors
• Treat complications
• Prepare for end-stage
• BP control is integral to management of CRF

• ACEI most effective in

 • ↓proteinuria

 • ACEI most effective in slowing rate of decline

• Useful even in advanced CRF

• Other anti-hypertensives can be added as
• Hypertension
• Hyperkalaemia
• Hyperlipidaemia
• Atherosclerosis
• Salt & Water Retention
• Anaemia
• Haemodialysis or Peritoneal dialysis

• Issues
 • Survival
 • Complications
 • Quality of Life
- Demand > Supply
- Increased graft failure rates
 - Altered immune responses
 - Increased side-effects
- Co-morbidities
Thank you!